
User Identification Through Command History
Analysis

Foaad Khosmood
Department of Computer Science

California Polytechnic State University

San Luis Obispo, CA 93407

foaad@calpoly.edu

Phillip L. Nico
Department of Computer Science

California Polytechnic State University

San Luis Obispo, CA 93407

pnico@calpoly.edu

Jonathan Woolery
Department of Computer Science

California Polytechnic State University

San Luis Obispo, CA 93407

woolery@calpoly.edu

Abstract—As any veteran of the editor wars can attest, Unix
users can be fiercely and irrationally attached to the commands
they use and the manner in which they use them.

In this work, we investigate the problem of identifying users
out of a large set of candidates (25–97) through their command-
line histories. Using standard algorithms and feature sets inspired
by natural language authorship attribution literature, we demon-
strate conclusively that individual users can be identified with a
high degree of accuracy through their command-line behavior.
Further, we report on the best performing feature combinations,
from the many thousands that are possible, both in terms of
accuracy and generality.

We validate our work by experimenting on three user corpora
comprising data gathered over three decades at three distinct
locations. These are the Greenberg user profile corpus (168 users),
Schonlau masquerading corpus (50 users) and Cal Poly command
history corpus (97 users). The first two are well known corpora
published in 1991 and 2001 respectively. The last is developed
by the authors in a year-long study in 2014 and represents the
most recent corpus of its kind. For a 50 user configuration, we
find feature sets that can successfully identify users with over
90% accuracy on the Cal Poly, Greenberg and one variant of the
Schonlau corpus, and over 87% on the other Schonlau variant.

I. INTRODUCTION

A Unix users command line behavior can reveal informa-
tion about their identity. Researchers have taken advantage of
this phenomenon to the problem domains of user profiling [1],
intrusion detection [2][3][4], and intelligent digital assistance
[5][6][7]. Of course user behaviors are subject to the affor-
dances of the underlying systems. A two-button interface, for
example, will not have much informative data distinguishing
the behavior of its multiple users.

Previous work in intrusion detection has shown success
in detecting when an attacker is masquerading as a known
user by noticing when the users behavior deviates from his
or her previous profile [8]. In the not-uncommon case when
the attacker is an insider, it is valuable to also know the iden-
tity of the masquerader. Natural Language Processing (NLP)
methods have shown great success in authorship attribution in
documents when the pool of possible authors is known [9]. In
contrast to natural languages, however, the language of Unix
shell commands is a highly constrained and artificial one. In
this work, we apply proven NLP methods to the problem of
determining the identity of an inside attacker.

The Unix shell command-line offers a rich menu of choices
to the user and multiple converging paths for the same task.
The intruder identification problem can be framed as a su-
pervised machine learning exercise whereby a record of Unix
shell command usage by an unknown user can be analyzed and
statistically correlated to a corpus of known users. Exercises
of this kind have been carried out before, but the existing
literature is focused on masquerading or classification based on
general profiles such as novice or expert programmers, rather
than individual users. The authorship attribution literature,
which does often have the goal of isolating a single author, has
traditionally focused on natural language corpora and relatively
small candidate sets.

In this paper, we explore user attribution with large candi-
date sets (25 to 97 users), using machine learning techniques.
We frame the specific problem as such: Given a set of user
behavior profiles (command line histories) belonging to N
known authors that we call candidates C1 to CN, can we
attribute a previously unexamined command history portion
of size S lines to one of the candidates with a high degree of
accuracy?

In section II of this paper, we discuss the background in
several related disciplines. In section III we discuss the three
corpora that we use in our experiments. In section IV, we
cover our methodology including algorithms and features. In
section V, our experiments and results are discussed and finally
in section VI, we provide conclusions and future work.

II. BACKGROUND AND RELATED WORK

Source attribution, or the process of identifying the orig-
inator of a given textual work, has been used by researchers
in several distinct disciplines. As far back as 1439, stylometry
was employed by Lorenzo Valla to argue that the Donation
of Constantine—the Roman Imperial Decree by which Con-
stantine I famously transferred authority over Rome and the
western part of the Roman Empire to the Pope—was in fact
a forgery [10]. Historically source attribution finds its roots
in linguistics and corpus studies as authorship attribution.
The traditional approach to authorship detection uses stylo-
metric analysis, and is generally performed manually [11].
Stylometry relies on the habitual and idiosyncratic application
of linguistic style—that is: syntactic, semantic, orthographic,
and lexicographic patterns—to differentiate between unique
authors. With the advent of modern day computing however,

978-1-4799-4521-4/14/$31.00 ©2014 IEEE

computational methods have been applied to the tasks of user
profiling [12][1][11], generation of adaptive user environments
[5][7], user command prediction [6][13][7][14], and intru-
sion/anomaly detection [2][3][15][16][17].

Perhaps the most widely recognised modern example of
authorship attribution is Forsyth and Holmes’s seminal study of
the Federalist Papers. Where the earlier work of Mosteller and
Wallace started the exploration of non-traditional authorship
attribution methods [18], Forsyth and Holmes broke new
ground by employing bigrams and character n-grams to argue
the authorship of these texts [19]. In more recent research,
Stamatatos and his associates have had success in authorship
attribution on literature using n-gram analysis [9][20][21]. The
authors in [21] actually evaluated different parameters for
their n-gram analysis and determined character trigrams to be
particularly informative across several dimensions.

Similar methods have been employed with the goal of intru-
sion detection. These methods analyze historically established
norms of behavior for individual users [3][4]. Much of the
effort to employ computers in the task of authorship attribution
has been focused on literary and historical works [20]. Other
scholars focus upon computer users themselves. Leveraging the
attribution task on the command line, these researchers attempt
to generate a user profile that can be used to automatically
detect masqueraders via statistical analysis [1][16][4][17].

User profiling [11] is also employed towards the goal of
command prediction [6][13][14] and the development of adap-
tive user interfaces [5][7]. In command prediction, one popular
approach is to profile each user based on the frequency of
their command use (first word unigrams) [6]. Korvemaker and
Greiner took this further, attempting to predict full command
lines using the Greenberg corpus [13]. Adaptive user interfaces
can be used to change system behavior to suit user needs, infer
user preferences, and predict user actions [5].

III. DATA SOURCES AND PRIVACY

In this work we use three corpora collected over a period
of 25 years, allowing us not only to have a large number
of candidate users, but also to observe how things may have
changed over time.

The first body of command traces was collected by Saul
Greenberg in 1988 [22]. This corpus comprises 168 users of
varying levels of technical proficiency. Although otherwise
anonymized, the users are divided into computer scientists,
non-programmers, novice programmers, and experienced pro-
grammers. These traces contain not only the commands issued,
but also all of the arguments passed to them.

The second body of command traces was collected in 2000
by Matthias Schonlau [8] as part of a study into detecting
attempts by one user to masquerade as another. This corpus
includes the traces of 50 anonymized users. Because these data
were collected using the acct auditing mechanism, the traces
include only command names, but not arguments, and certainly
not typographical errors which might provide clues to identity.

The third body of command traces was collected at Cal
Poly during the Winter and Spring terms of 2014. For these
traces we recruit volunteers from an upper division computer
science class, Introduction to Operating Systems. The class is

TABLE I. DETAILS OF THE EXPERIMENTAL CORPORA

Total Total 100-line Ave. Frags.
Corpus Commands Users Fragments per user

Cal Poly 90 554 97 963 9.93

Greenberg 290 215 168 2820 16.79

Schonlau 726 900 50 719 14.38

TABLE II. COMMAND LINE PROPERTIES OF THE CORPORA

Average Average
Line Length Word Length

Corpus (words) (characters)
Cal Poly 2.47 5.99

Greenberg 1.88 4.19

Schonlau (Cropped) 1.00 4.46

Schonlau (Filtered) 1.00 4.49

taken by junior and senior computer science, software engi-
neering and computer engineering students. All students have
Unix accounts provided by the Computer Science department
in their first year. This group would be considered experienced
Unix users and programmers. The contributions were made
near the end of the term and thus would likely include all
the work required for the Operating Systems class including
assignments that required the use of Unix accounts. 97 individ-
uals contributed their shell history files to this corpus. These
were almost exclusively bash shell histories.

A. User Privacy

Because user command histories record everything a user
does there is the possibility of them capturing sensitive
personal information. As with the Greenberg, and Schonlau
corpora, we address this concern by anonymizing the user
names. After collecting the traces, each username is randomly
mapped onto one of the most popular names from the 1890
U.S. census, and all instances of that login name within the
traces are replaced with the new alias. Access to the traces
has been restricted to the analysis software without any human
having looked at them.

The resulting experimental corpora are described in Table I.
Some key features of the corpora are shown in Table II.

IV. METHODOLOGY

Major steps in our methodological workflow are: prepro-
cessing, feature selection, algorithm selection, parameteriza-
tion, training and finally evaluation. We derive a floating point
accuracy value associated with each experiment which we use
to compare the relative merits of features and parameters.
Figure 1 shows the major steps in our workflow.

A. Preprocessing

We first create a profile per individual in the corpus. For
the Cal Poly corpus (CP) where more than one history file
could have been submitted per individual, we combine the files
in order of chronology obtaining one large record per user.
The Greenberg corpus (GB) is processed by extracting just
the command line entries, discarding the labeled classes used
in that study. The entries are combined into a single document
per user.

The Schonlau data is preprocessed in two different ways.
First we crop to the initial 5000 lines guaranteed to have

Fig. 1. Data processing workflow

no masquerading commands in them. That gives uniform
traces of 5000 confirmed commands per user. This is the
Schonlau-cropped corpus (SC) and is very much comparable
to the other two corpora. In addition, we process the traces to
remove the 100-line segments of unknown origin containing
the masquerading commands. The result is a slightly different
corpus we call Schonlau-filtered (SF) which yields longer
traces, but of less uniform length.

Next, we break up each profile into one or more documents
of 100 lines each. We discard the less than 100-line remainder
of each profile, and we also dismiss the entire profile if it is
less than 100 lines.

We do not take all of the standard preprocessing steps that
computational linguists often recommend, as we believe our
analysis would not benefit from them. These steps include:
case collapsing, word-stemming, non-alphabetic character re-
moval and punctuation removal. We do however, handle some
unique shell features such as command delimiters and pipes
when extracting features. A line appearing in a user’s trace,
for example, may contain a pipe symbol and thus would need
to be processed as two commands with possibly two sets of
flags and arguments.

B. Feature selection

The literature in areas of statistical authorship attribution,
as well as machine learning for general text documents,
contains many features found to be useful with different
experiments. Stamatatos outlines the various properties of
lexical, character, syntactic, semantic, and application-specific
features in [9]. N-gram features, both at word and character
level, are particularly popular, as are semantic features. Word
n-grams and character n-grams have been used with some
success in many studies [21]. In classification experiments
success has been found using function words as features
[23]. The most important criterion for selecting features in
authorship attribution tasks is their frequency. In general, the
more frequent a feature, the more stylistic variation it captures
[9]. We divide features into these categories:

1) First Word (three types: distinct first words uncon-
ditional, first words that are known Unix bin com-
mands, and first words that are known Unix sbin
commands)

2) Limited semantic (two types of semantic features:
Unix-style flags and numeric arguments)

3) Word n-grams (for n= 0, 1, 2, 3, and 5 words)

TABLE III. FEATURE SET LABELING USED IN FIGURES

Symbol Feature
f First word (command name)

s Limited semantic labeling of words

wN Word N-grams of length N
cN Character N-grams of length N

4) Character n-grams (for n= 3, 6, and 9 characters)

Each feature in this analysis is binary. We use labels listed
in Table III to refer to these feature categories throughout this
paper.

C. Algorithms

Three fairly standard classification algorithms are used:
Naı̈ve Bayes (NB), Decision Trees (DT) and Maximum En-
tropy (ME). Implementations from the Natural Language Tool
Kit (NLTK) [24] package are used. We discuss each of the
methods below. We derive a floating point accuracy value
associated with each classification experiment which we use
to compare the relative merits of features and parameters.

The Naı̈ve Bayes classifier is a probabilistic classifier. It
makes the naı̈ve assumption that the presence or absence of
a given feature is unrelated to that of another feature. In text
classification, the NB multinomial variant (MNB) remains a
very popular method both for its simplicity and reliability
[25][26]. MNB does often perform poorly compared to other
models, and for this reason it is often used as a comparison
baseline. For a more detailed discussion on strengths and
weaknesses of MNB, see [27].

Although we use MNB, and thus consider prior probabil-
ities based on total number of features observed, we do not
count the features themselves more than once per document
(binary features). Thus when calculating the overall probabil-
ity, our implementation ignores the “0” occurrence cases, as a
form of smoothing.

Decision Trees are logic based learning algorithms. The
basic method is the construction of a tree where each node is
a feature. During training, at each step, the algorithm searches
through all the features and finds one that best divides the
rest of the documents evenly in branches. The process is
repeated at each branch until the leaves of the tree become
individual classes. For a great overview see [28]. Our decision
tree implementation is very similar to the ID3 algorithm [29].

The Maximum Entropy classifier, also known as multi-
nomial logistic regression, works to increase the influence
of those features that contribute most to documents being
classified correctly during training. These classifiers iteratively
distribute weights among all the terms of a linear equation to
maximize the likelihood of correct classification. The resulting
weight matrix is then applied to the features of the test set
data to make a class prediction. An optimization function
is required. We employ the conjugate gradient method to
iteratively derive the best distribution. See [30] for more on
the method.

V. EXPERIMENTS AND RESULTS

In order to determine the best performing feature combina-
tions, we run a large number of classification experiments with

 0%

 20%

 40%

 60%

 80%

 100%

CP GB SC SF

A
cc

ur
ac

y

Naive Bayes
Decision Tree
Maximum Entropy

Fig. 2. All corpora, maximum size, using only first word

different features, corpus sizes and algorithms. With respect to
features in particular, there is no evidence that a superset of
features performs as accurately or better than a smaller subset
of them. In fact, frequently this is false due to increase of noise
from bad features. Thus, we can only experimentally determine
which subset performs best.

As outlined in the last section, we have four feature groups
and any combination of them can be included in a classification
experiment. When denoting a grouping or combination of
features in the following tables, we use code letters possibly
followed by integers to indicate the feature (see Table III). We
experiment with all combinations of features. The first group
is the “first word” features which we denote by “f”. Another
group, “s”, detects numerals and Unix flags. Together there
are four “fs” combinations including the case where neither is
included. To these we add 5 variants of word n-grams “wng
N” for N= 0, 1, 2, 3, 5; and four variants of character n-grams
“cng N” with N= 0,3,6 and 9. Altogether, there are 80 feature
combinations.

The feature groupings are applied to our four corpora with
up to four different sizes1, and three possible algorithms (NB,
DT, ME). Thus we have a total of 80× 12× 3 = 2880 unique
classification experiments, each resulting in a floating point
accuracy value.

When running each experiment with a certain size and
corpus, we retrieve the records of the specified number of users
of the given corpus randomly. We divide each user’s trace into
100 line labeled documents. We then set aside one third of the
total number of documents at random as our test set. We train
with the other two thirds. Each experiment is run three times
with a different random set of users and the accuracy results
averaged.

We summarize our findings, first by analyzing the effect
of individual features, then by attempting to evaluate their
combined effect. In the interest of simplicity, in the following
four figures, only the largest sample size for each corpus is
considered since this represents the most difficult classification
problem.

Figure 2 presents the results for all algorithms for all
corpora using only the first word feature.

Figure 3 presents the results for all algorithms for all

125 and 50 users for all four corpora; 70 and 97 users just for CP and GB,
yields 12 corpus-size combinations in total.

 0%

 20%

 40%

 60%

 80%

 100%

CP GB SC SF

A
cc

ur
ac

y

Naive Bayes
Decision Tree
Maximum Entropy

Fig. 3. All corpora, maximum size, using only “semantic”

 0%

 20%

 40%

 60%

 80%

 100%

C
P−

w
1

C
P−

w
2

C
P−

w
3

C
P−

w
5

G
B

−
w

1

G
B

−
w

2

G
B

−
w

3

G
B

−
w

5

SC
−

w
1

SC
−

w
2

SC
−

w
3

SC
−

w
5

SF
−

w
1

SF
−

w
2

SF
−

w
3

SF
−

w
5

A
cc

ur
ac

y

Naive Bayes
Decision Tree
Maximum Entropy

Fig. 4. All corpora, maximum size, using word n-grams

corpora using only the “semantic” feature group. Note that the
Schonlau corpora contain only singular commands without any
flags or argument, and therefore no features could be extracted
from them for this experiment.

Figure 4 presents the results for all algorithms for all
corpora using only the word n-grams of sizes 1, 2, 3, and
5.

Figure 5 presents the results for all algorithms for all
corpora using only the character n-grams of sizes 3, 6, and
9.

Now let us examine the best performances. Table IV shows
which feature sets and algorithms performs best for each
corpus at each sample size. Feature sets are specified by
the system as above. For example the feature set “fsw2c6”
means the feature set contains all first-word features, semantic
features, word bigram features and character 6-gram features.

Table V shows a list of the top 50 best performing feature
combinations based on average performance over all four
corpora and all 12 sample sizes. Every row is supposed to
contain both a feature set and one of the three algorithms.
However, every one of the top 50 best performing entries are
by the ME algorithm, thus we do not denote the algorithm
in the table. Many of the best performing features include
both word and character n-grams and the absolute best is a
simple word trigram. While several of the top 10 combinations
include semantic features (“s”), there is always the same
feature combination without the semantic features actually
performing better, indicating the semantic features tend to hurt

 0%

 20%

 40%

 60%

 80%

 100%
C

P−
c1

C
P−

c3

C
P−

c6

C
P−

c9

G
B

−
c1

G
B

−
c3

G
B

−
c6

G
B

−
c9

SC
−

c1

SC
−

c3

SC
−

c6

SC
−

c9

SF
−

c1

SF
−

c3

SF
−

c6

SF
−

c9

A
cc

ur
ac

y
Naive Bayes
Decision Tree
Maximum Entropy

Fig. 5. All corpora, maximum size, using chracter n-grams

TABLE IV. BEST FEATURE SET AND ALGORITHM FOR EACH CORPUS

AT EACH SIZE (ALGORITHM: MAX. ENTROPY IN ALL CASES)

Corpus Size Features Accuracy
Cal Poly (CP) 25 w3 96.7%

50 w5 93.0%
70 w5 89.9%
97 w5 80.5%

Greenberg (GB) 25 w2c6 93.1%
50 w3c9 90.2%
70 w2c9 87.1%
97 w3 86.3%

Schonlau, cropped (SC) 25 fw1c9 93.6%
50 fw5c3 88.6%

Schonlau, filtered (SF) 25 w5c3 92.5%
50 w5c3 90.3%

performance, rather than help. Number 12 is the first that
includes the first-word element (“f”). In general, the situation
is very similar to semantic features. When either “f” or “s”
appear in the set, it’s typically a worse-performnig version
of a better combination already listed ahead of it in ranking.
It’s clear that n-gram combinations, particuarly low number
word n-grams and high number character n-grams are the most
robust across all four corpora.

The overall best performing feature set / algorithm com-
bination, averaging 89.1%, was “w3”. Interestingly, the word
trigram was also instrumental in achieving best results in [12].
Table VI shows the word trigram performance for each corpus
at each size.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we show that Unix users can be individually
identified through analysis of their command line usage with
a high degree of accuracy. This is true even with almost 100
users as potential attackers. It is particularly useful in insider
attack situations where the attacker may be using another user’s
credentials. For a 50 user corpus where we can experiment
with all four of corpora, we are able to achieve accuracy
rates of 87% to 93%. We further investigate which set of
conditions leads to the best performance, experimenting with
four different corpora with sizes ranging from 25 to 97, three
different classification algorithms, as well as over 80 distinct
feature combinations. We find that the ME algorithm, and word
trigram features work best overall. More detailed observations
are offered below.

TABLE V. TOP PERFORMING FEATURE SET/ALGORITHM PAIRS

(ALGORITHM: MAX. ENTROPY IN ALL CASES)

Accuracy
Rank Features CP GB SC SF Overall
1) w3 89.3 88.7 89.5 89.4 89.1%

2) sw3 88.4 87.9 89.5 89.4 88.6%

3) w3c9 86.6 89.9 89.1 90.0 88.6%

4) w2c9 86.1 89.9 89.3 90.1 88.5%

5) sw2c9 86.2 88.9 89.3 90.1 88.3%

6) sw3c9 86.4 88.7 89.1 90.0 88.2%

7) w5c9 86.6 88.3 89.4 90.1 88.2%

8) c9 87.3 87.8 89.1 89.8 88.2%

9) w5 90.0 86.5 86.6 88.3 88.0%

10) sw5c9 86.4 87.2 89.4 90.1 87.8%

11) w1c9 84.9 88.2 89.9 90.5 87.7%

12) fw3c9 85.8 87.3 89.6 90.2 87.7%

13) sc9 85.7 87.6 89.1 89.8 87.6%

14) c6 85.6 87.0 89.0 89.8 87.5%

15) fsw3c9 85.3 87.0 89.6 90.2 87.4%

16) sw1c9 84.8 87.0 89.9 90.4 87.3%

17) fc9 84.1 87.6 89.4 90.6 87.2%

18) fw2c9 84.6 87.3 89.4 90.0 87.2%

19) sw3c6 84.4 86.9 90.0 90.5 87.2%

20) fsw2c9 84.7 87.0 89.4 90.0 87.1%

21) fw5c9 85.4 85.8 89.6 90.6 87.1%

22) sw2c6 83.4 88.2 89.3 89.9 87.1%

23) fsw5c9 85.4 85.6 89.6 90.6 87.1%

24) w2 84.3 87.3 88.9 89.7 87.0%

25) w3c6 82.6 88.4 90.0 90.5 87.0%

26) sc6 83.4 88.0 89.0 89.8 86.9%

27) w2c6 82.9 88.7 89.3 89.9 86.9%

28) fsc9 84.1 86.5 89.4 90.6 86.9%

29) fsw3c6 83.8 86.2 90.1 90.5 86.8%

30) fw1c9 83.6 86.0 90.6 90.6 86.8%

31) w5c6 82.5 87.4 89.9 90.7 86.7%

32) sw5c6 83.3 86.2 89.9 90.7 86.6%

33) fw3c6 83.3 86.1 90.1 90.5 86.5%

34) w3c3 82.2 86.8 90.3 91.0 86.5%

35) fw5c6 82.8 85.8 90.3 91.0 86.4%

36) sw2 83.7 86.2 88.9 89.7 86.4%

37) fsw1c9 83.2 85.3 90.6 90.6 86.4%

38) fw2c6 83.3 86.0 89.4 90.3 86.4%

39) fsc6 83.0 86.7 89.1 89.7 86.4%

40) w1c6 82.3 87.0 89.9 90.0 86.4%

41) sw2c3 82.9 86.4 89.2 90.0 86.3%

42) fsw5c6 82.6 85.7 90.3 91.0 86.3%

43) fw2c3 82.5 86.7 89.8 89.8 86.3%

44) fsw2c6 82.5 86.3 89.4 90.3 86.2%

45) fw1c6 83.4 85.4 89.6 89.8 86.2%

46) w2c3 81.6 87.2 89.2 89.9 86.0%

47) fc6 83.0 85.7 89.1 89.7 86.0%

48) sw1c6 82.1 86.1 89.9 90.0 86.0%

49) fsw1c6 83.0 85.0 89.6 89.8 85.9%

50) fsw2 82.2 85.3 89.9 90.2 85.9%

TABLE VI. WORD TRIGRAM (W3) FEATURE PERFORMANCE OVER ALL

CORPORA AND SIZES

Corpus Size Accuracy
Cal Poly (CP) 25 96.7%

50 91.4%
70 89.2%
97 79.8%

Greenberg (GB) 25 91.9%
50 90.0%
70 86.7%
97 86.3%

Schonlau, cropped (SC) 25 91.7%
50 87.3%

Schonlau, filtered (SF) 25 90.4%
50 88.4%

A. Observations about feature sets

In our study, semantic and first-word features appeare less
consistently effective than other features. While in a few cases
the “fs” feature combination provides higher accuracy, this
feature set usually produces less accurate results than other
features.

Word n-grams show themselves to be very strong stand-
alone features, with word unigrams and bigrams providing
many top results. Character n-grams were also shown to be
exceptionally strong features. In addition to high accuracy,
character n-grams provide the best examples of scalability,
showing some of the highest results in our study while being
run on the largest author sets. The 9-gram feature “c9” is the
best overall character n-gram feature, appearing in many of
our best results.

Although, we analyze many features and variations, more
are possible and have been alluded to in the literature. More
semantic features are possible: for example actual function
category of commands like “editor”, “graphics” or “software
development tool”. Extracting these features would require
additional annotation. Given the low performance of the set
of semantic features we already use, it would be interesting to
see if more such features would improve accuracy.

B. Machine Learning approaches

Algorithms used are a good cross section of general
methods, but more approaches are possible. Our three clas-
sifiers represent three different philosophies to classification.
The important point is that none of the three classifiers are
specialized and fine-tuned for this kind of data. They are con-
sidered generic text analysis methods in the NLP community.
Inclusion of NB is almost a necessity in any machine learning
comparison. NB is considered the classic generative model
and often forms the baseline analysis for other algorithms. DT
algorithms are logic based (as opposed to statistical). This kind
of classifier has its own strengths and weaknesses. Decision
tree classifiers are often oversensitive to small changes. The
ME is the only discriminative model with constant weight
redistribution. We suspect it was best performing because we
had many features with uneven contributions. Both DT and
ME have tendencies to over-fit the data. Our result indicates
that ME classifiers are superior to either DT or NB for these
experiments.

In addition to these, SVM and Boosting-based ensemble
classifiers could be incorporated in future work.

C. Changes over time

There is an additional observation that can be made about
the accuracy of user identification across our two most similar
corpora, Greenberg and Cal Poly: The algorithms perform bet-
ter on the older corpus given the same user sizes and features.
We postulate this is because the nature of user interfaces has
changed dramatically over time and command line usage has
diminished2. As more applications move to GUIs and the web,
less and less gets captured in command logs. The Greenberg

2Once upon a time, before the advent of the World Wide Web, even
procrastination had to be command-line based: A quick check shows rogue
and news readers in 33% of Greenberg’s traces.

TABLE VII. UNIQUE COMMANDS PER USER

Corpus
Cal Poly Greenberg

Min. 16 11

Max. 184 394

Mean 59.5 91.8

S.D. 24.7 64.0

corpus has 5365 unique commands, compared to Cal Poly, with
only 1761 unique command. Individual user behavior is shown
in Table VII. We did not include Schonlau’s data here, because
the command data were not taken from typed commands alone.

In conclusion, our user attribution experiments with three
separate and distinct corpora allow us to identify some high
performing feature combinations and algorithms. While many
more combinations of features and algorithms are conceivable
–and we have identified many for future work– the experiments
we conduct result in high levels of accuracy for the given
corpora, and allow us to consider important questions about
the data and the process.

For a full list of experiments and results please visit
http://www.csc.calpoly.edu/˜foaad/UA study.

ACKNOWLEDGMENT

The authors would like to thank the volunteers who were
willing to share their command histories. Without their data,
this work would not have been very interesting.

REFERENCES

[1] W.-H. Ju and Y. Vardi, “Profiling UNIX users and processes based on
rarity of occurrence statistics with applications to computer intrusion
detection,” in Proceedings of the Fourth International Symposium on
Recent Advances in Intrusion Detection (RAID 2001), Davis, CA, 2001,
pp. 1–10.

[2] S. Kumar, “Classification and detection of computer intrusions,” Ph.D.
dissertation, Purdue University, 1995.

[3] T. F. Lunt, “A survey of intrusion detection techniques,” Computers and
Security, vol. 12, no. 4, pp. 405–418, Jun. 1993.

[4] D. Geng, T. Odaka, J. Kuroiwa, and H. Ogura, “An n-gram and stf-
idf model for masquerade detection in a unix environment,” Journal of
Computer Virology and Hacking Techniques, vol. 7, no. 2, pp. 133–142,
2011.

[5] A. Lee, “Investigations into history tools for user support,” Ph.D.
dissertation, University of Toronto, Toronto, Canada, 1992, tech. report
CSRI-271.

[6] B. D. Davison and H. Hirsch, “Experiments in unix command predic-
tion,” in Proceedings of the fourteenth national conference on artificial
intelligence and ninth conference on Innovative applications of artificial
intelligence, ser. AAAI’97/IAAI’97. AAAI Press, 1997, pp. 827–827.

[7] S. Greenberg, J. Darragh, D. Maulsby, and I. H. Witten, “Predictive
interfaces: What will they think of next?” Department of Computer
Science, University of Calgary, Calgary, Alberta, Canada, Tech. Rep.
1991-448-32, 1992.

[8] M. Schonlau and M. Theus, “Detecting masquerades in intrusion detec-
tion based on unpopular commands,” Information Processing Letters,
vol. 76, pp. 33–38, 2000.

[9] E. Stamatatos, “A survey of modern authorship attribution methods,”
Journal of the American Society for Information Science and Technol-
ogy, vol. 60, no. 3, pp. 538–556, 2009.

[10] C. B. Coleman, Discourse on the Forgery of the Alleged Donation of
Constantine (Translation of: Valla, Lorenzo (1440). De Falso Credita et
Ementita Constantini Donatione Declamatio). New Haven, CT: Yale
University Press, 1922, hosted at the Hanover Historical Texts Project
(http://history.hanover.edu/texts/vallatc.html).

[11] V. N. P. Dao, R. Vemuri, and S. J. Gempleton, “Profiling users in
the UNIX OS environment,” in Proceedings of the International ICSC
Conference on Intelligent Systems and Applications, University of
Wollongong, Australia, Dec. 2000.

[12] J. A. Iglesias, P. Angelov, A. Ledezma, and A. Sanchis, “Creating
evolving user behavior profiles automatically,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 24, no. 5, pp. 854–867, 2012.

[13] B. Korvemaker and R. Greiner, “Predicting unix command lines:
Adjusting to user patterns,” in Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on Inno-
vative Applications of Artificial Intelligence. AAAI Press, 2000, pp.
230–235.

[14] B. D. Davison and H. Hirsh, “Predicting sequences of user actions,” in
Proceedings of the 1998 AAAI/ICML Workshop “Predicting the Future:
AI Approaches to Time-Series Analysis”. AAAI Press, 1998, pp. 5–12.

[15] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, vol. 6, no. 3,
pp. 151–180, Aug. 1998.

[16] R. A. Maxion, “Masquerade detection using enriched command lines,”
in Proceedings of the International Conference on Dependable Systems
and Networks. San Francisco, CA: IEEE Computer Society, Jun. 2003,
pp. 5–14.

[17] S. Shahidi, P. Mazrooei, N. N. Esfahani, and M. Saraee, “Proximity user
identification using correlogram,” Intelligent Information Processing V
(Proceedings of the 6th IFIP International Conference on Intelligent
Information Processing), pp. 343–351, 2010.

[18] F. Mosteller and D. L. Wallace, Inference and disputed authorship: The
Federalist. Addison-Wesley, 1964.

[19] D. I. Holmes and R. S. Forsyth, “The federalist revisited: New directions
in authorship attribution,” Literary and Linguistic Computing, vol. 10,
no. 2, pp. 111–127, 1995.

[20] E. Stamatatos, N. Fakotakis, and G. Kokkinakis, “Automatic authorship
attribution,” in Proceedings of the Ninth Conference of the European
Chapter of the Association for Computational Linguistics (EACL 1999),
1999, pp. 158–164.

[21] J. Houvardas and E. Stamatatos, “N-gram feature selection for author-
ship identification,” in Proceedings of the 12th international conference
on Artificial Intelligence: methodology, Systems, and Applications, ser.
AIMSA’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 77–86.

[22] S. Greenberg, “Using UNIX: collected traces of 168 users,” Department
of Computer Science, University of Calgary, Alberta, Canada, Tech.
Rep. 88/333/45, includes tar-format cartridge tape, 1988.

[23] Y. Zhao and J. Zobel, “Effective and scalable authorship attribution
using function words,” in Proceedings of the Second Asia conference
on Asia Information Retrieval Technology, ser. AIRS’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 174–189.

[24] S. Bird, E. Klein, and E. Loper, Natural language processing with
Python. O’reilly, 2009.

[25] J. D. M. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the
poor assumptions of naive bayes text classifiers,” in Proceedings of the
Twentieth International Conference on Machine Learning, Washington,
DC, 2003, pp. 616–623.

[26] A. McCallum and K. Nigam, “A comparison of event models for naive
bayes text classification,” in AAAI-98 workshop on learning for text
categorization, vol. 752, 1998, pp. 41–48.

[27] E. Frank and R. R. Bouckaert, “Naive bayes for text classification with
unbalanced classes,” in Knowledge Discovery in Databases: PKDD
2006. Springer Berlin Heidelberg, 2006, pp. 503–510.

[28] S. K. Murthy, “Automatic construction of decision trees from data:
A multi-disciplinary survey,” Data mining and knowledge discovery,
vol. 2, no. 4, pp. 345–389, 1998.

[29] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[30] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

