
Generating Dynamic Quests with Compelling Narratives Using Player Behavior

Sean Mendonca and Foaad Khosmood
Department of Computer Science and Software Engineering

California Polytechnic State University
smendonc@gmail.com, foaad@calpoly.edu

Abstract

Quests with compelling narratives are notoriously difficult to
write and expensive to maintain, yet in most MMORPGs,
quests must be churned out constantly to keep the players par-
ticipating. Quests are often delivered in form of “instance” or
parallel universes accessible only to a single player or a small
party, and featuring micro-narratives that must necessarily be
inconsequential to the world. Most dynamic quest generation
techniques which promise to automate this process, have well
known limitations such as leading to formulaic quests, being
non-responsive to world events and over-relying on robotic
NPCs. In this paper, we explore a different vision of dynamic
quest generation, one that involves agents – including hu-
man agents – contributing dynamic and surprising elements
to quests for other humans. We build a prototype multiplayer
game to test aspects of this idea and report on a pilot study
that demonstrates awareness of the dynamic causal chain that
lead to a quest. We conduct three small user studies. While
some positive results can be deciphered, the studies exposed
numerous problems, and thus we consider the results incom-
plete. We hope this can be an early step toward realizing the
goal of harnessing the dynamism of human players to gener-
ate compelling quests and narratives.

Introduction
Quests are a fundamental part of MMORPGs. Quest gen-
eration in open world MMORPGs is expensive and diffi-
cult to maintain, as they must be constantly produced to
maintain the interest of players. The high cost of creating
an MMORPG makes them a risky investment for develop-
ers (Bartle 2016). MMORPG Quests are often implemented
as instances which necessarily exclude the vast majority of
other human players in the game, and can not be conse-
quential to the overall world narrative (if any). For example
Star Wars: The Old Republic (Electronic Arts, 2011) uses
instancing for story-related content, where player decisions
lead to different outcomes in their personal story instance.
However, the player decisions and story progression do not
matter outside of their personal instances of the story.

Another tendency is that the single player or small party
of humans who are part of the quest, must generally play
the same cooperative role in the story. They are all on the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

same side essentially solving the same problem. There are
no managed narratives that involve more than one human
player in different, perhaps even adversarial roles. These is-
sues can break suspension of disbelief, as players uncover
shortcomings from ostensibly “persistent” worlds that fea-
ture multiple timelines, inconsistent experiences, and no real
narrative consequence to player actions.

There have been many research and commercial attempts
to use procedural content generation for story and drama re-
lated content but they usually are not able to match the qual-
ity of human-created story content (Ryan 2018). Procedural
content is often relegated to side quests or minor content
in commercial games such as The Elder Scrolls V: Skyrim
(Bethesda Softworks, 2011), Fallout 3 (Bethesda Softworks,
2008), and Assassin’s Creed Odyssey (Ubisoft, 2018).

Many games that rely on extensive procedural content
generation have been criticized as being “shallow”. The
same issue can seen in procedurally generated quests (Her-
nandez 2016). Ultimately, even PCG quests rely on a pre-
written closed set of elements leading to recognizably repet-
itive quests and ones that are unresponsive to current world
events.

The task of dynamic quest or dynamic narrative gener-
ation systems is even tougher in multiplayer RPG games.
Persistent world MMORPGs, e.g. Eve Online (CCP Games,
2003), Black Desert Online (Pearl Abyss, 2015), and Al-
bion Online (Sandbox Interactive, 2017) feature a world that
“continues to exist and develop internally even when there
are no people interacting with it” (Bartle 2004). Keeping
player actions consequential in persistent worlds is much
more difficult when there are multiple players acting in in-
coherent ways. The system must deal with the possibility
that one or more of the human players won’t comply with
instructions or abandon the mission, potentially ruining cru-
cial parts of the experience for others. Unanticipated agent
behavior is difficult to explain in the narrative.

Our approach: user-generated content
Our approach for more dynamic automated quest narratives
is to utilize user behaviors to form quests. By user behav-
ior, we are referring to activities of in-session agents, i.e.
the users generating the content are in the same game as the
recipients pursuing quests based on that content. Figure 1
demonstrates the major differences between our approach



Figure 1: Typical dynamic quest generation system based on pre-written elements (a). Proposed quest generation system based
on dynamic events resulting from agent/player behavior (b).

and existing approaches that rely on a static library of narra-
tive elements.

This approach poses a number of difficult challenges
which we seek to address using the experimental Panoptyk
framework. The framework, which is also developed by the
authors and used in a few other projects(Miller et al. 2019),
is explained below in the Related Works section. Panoptyk
allows us to set up experiments around just the design of
quests and narratives without having to create a full scale
MMORPG.

We conduct three user studies, but encounter problems
that basically invalidate the results. However, we do share
our experience and hope this work can contribute to better
studies in the future.

Related Work
Story and narrative generation
Inspired by Morphology of the Folktale (Propp 2010),
Joseph Grimes designed a system in early 1960s that would
use the narrative structures to generate stories. His system
predated other story generators but was not published or dis-
cussed in detail until Grimes’ interviews with James Ryan
many years later (Ryan 2017).

A few years later, TALE-SPIN (Meehan 1977) was built
as a system to generate simple stories based on resolving
a problem/goal of a main character. The program was able
to use location, personality, relationships, and world state
to plan out the actions each character takes. The resulting
“stories” were a description of the modeled worlds and log-
ical actions characters took to fulfill their goals. However,
even though characters acted in a reasonable way to achieve
their goals, there was no way for the system to differen-
tiate a compelling story from a mundane account of facts

and actions that characters took to accomplish simple goals.
Nonetheless, TALE-SPIN is considered the first planning-
based approach to story generation and is frequently ref-
erenced by scholars in the field as such (Shaker, Togelius,
and Nelson 2016). Other planning based narrative genera-
tion programs that followed TALE-SPIN include but are not
limited to AUTHOR (Dehn 1981), UNIVERSE (Lebowitz
1985), and Minstrel (Turner 1993).

Quest generation
The TRUE STORY (Pita, Magerko, and Brodie 2007) sys-
tem attempts to generate compelling quests for MMORPGs
by using the past quests and/or history of players. The sys-
tem is able to create “kill,” “steal,” “discover,” and “retrieve”
quests based on positive or negative history with other play-
ers or items. The system also takes into account other factors
such as the player’s skills when assigning appropriate quest
targets. Unfortunately, the authors did not discuss any form
of user testing or other validation metrics. They admit the
system did not have a way to determine the importance of
different pieces of history and therefore struggled to gener-
ate a meaningful chain of quests.

Doran and Parberry describe a prototype quest generator
based on their analysis of over 750 quests from Eve On-
line (CCP Games, 2003), World of Warcraft (Blizzard En-
tertainment, 2004), Everquest (Sony Online Entertainment,
1999), and Vanguard: Saga of Heroes (Sony Online Enter-
tainment, 2007). The authors categorize quests from said
games into nine different categories representing the motiva-
tion behind the quests (Doran and Parberry 2011). The moti-
vations were then associated with tasks that they call “strate-
gies” that could be fulfilled with a sequence of actions. Their
final prototype is able to randomly generate quests from their



database of motivations and strategies as well as list out ac-
tions that players would need to do to complete them. In a
followup paper, the authors describe the implementation of
their quest generator into the MMORPG Everquest (Doran
and Parberry 2015). However, their integration still requires
a human designer to supply characters and dialog to be used
by the quests. The generated quests also required a very spe-
cific chain of actions to be fulfilled due to the use of partial-
order planning.

Dwarf Fortress (Bay 12 Games, 2006) is often seen as
one of the most successful and influential practical appli-
cations of emergent narrative and procedural content gener-
ation (Ryan 2018). Hundreds of years worth of actions, in-
cluding the rise and fall of civilizations, is generated through
simulation. Rather than trying to explicitly generate stories,
the game relies on the strength of the simulation to natu-
rally create interesting events and situations that can be re-
told as a story. Procedurally generated quests appear in ad-
venture mode, a special mode where the player controls a
single character rather than an entire fortress. Quests in this
mode are given by an omniscient commander NPCs that
create quests based on events affecting their faction (Dwarf
Fortress Wiki).

MKULTRA
MKULTRA (possibly named after but is unrelated to the
CIA mind control project of the same name) is an exper-
imental system by Ian Horswill designed to explore sev-
eral AI-based game mechanics (Horswill 2015). Game me-
chanics are designed around interacting with NPCs that
have generative reasoning and natural language capabili-
ties. The player controls their character by specifying goals
and actions through typed natural language. The game is
a “mystery-and-detection” game where the player needs to
solve secrets. Players are able to influence the behavior
of NPCs by injecting false beliefs directly into the NPC’s
knowledge base. Characters in the game only complete re-
quests that do not conflict with any of their beliefs. The game
was intended to serve as a open-source platform for AI and
interactive narrative researchers.

In a follow-up paper, Horswill addresses the successes
and failures of MKULTRA (Horswill 2018). The Unity Pro-
log interpreter built for the project ended up being utilized
for several projects, including the commercial game Project
Highrise. The performance of a definite clause grammar
(DCG) parser turned out to be sufficient according to Hor-
swill. Furthermore, NPCs characters using reactive planning
were able to excel at accomplishing simple tasks typed out
by players. Horswill gives the example that typing “can
I have an apple?” would result in the NPC going to the
kitchen, opening the refrigerator, taking an apple, walk-
ing back to the player, and finally, giving it to the player.
Unfortunately, many players struggled to correctly interact
with the system. Players would often type incomplete com-
mands and/or explore the environment without interacting
with NPCs. They also struggled to determine what com-
mands were valid and wasted time attempting different sen-
tences. The limited scope of NPC knowledge bases was also
a major problem; NPCs were unable to appropriately re-

spond to prompts or behaviors outside the scope of their lim-
ited understanding of the world. Horswill concludes that at-
tempting to portray NPCs as lifelike characters directly con-
flicted with the limited ways in which the game could actu-
ally be solved. This ultimately led to player confusion and
inability to solve the puzzle.

Panoptyk framework
Panoptyk is an open-source experimental framework meant
to create MMORPGs with persistent worlds, where NPCs
are designed to be indistinguishable from human players.
NPCs are given the same information and capabilities as
human players, and the game is heavily based around the
creation, possession, and exchange of information around
the game world. All “agents” (human or bot/NPC) use the
same interface to connect to a main game server and per-
form activities, such as movement, exchanging information
or inventory items. The server does not distinguish between
human or bot. A separate HTML-based client is used for ac-
tual humans but it is merely a layer for the same API calls
the bots use. Bots are meant to be launched by participants
with code executing on remote machines.

Players, once joined, form or join factions that have con-
flicting overall goals, and must engage in navigation, ex-
change, intrigue and deception to fulfill their faction’s ob-
jectives. The system supports a map in form of a set of con-
nected spaces. It allows agents to enter and exit spaces and
observe the actions of other agents in the same space.

Experimental Setup
We create a scenario to test out the quest generation system
within the Panoptyk framework. We create the fictional town
Bentham (Figure 2) and two factions of agents: Town Guard
and Thieves Guild. The world is populated with at least 10
AI-controlled NPCs, though the human players were not told
of this.

Faction setup
In our prototype, a pre-programmed NPC faction leader
agents assign appropriate quests to their faction members in
return for rank advancement and gold. These tasks align with
their faction’s goals and are reactive towards current events
in the game. Since quests are designed around the agent-
generated information, quests can be dynamically generated
as long as new information is being created by other agents.
We theorize that using players’ actions to determine quests
will increase their personal connection to quests and reduce
the repetitiveness often noticed in other MMO quest sys-
tems.

Town guard faction The town guard faction leader con-
stantly assigns quests to combat illegal activity around the
city. First it assigns quests to arrest agents that have com-
mitted crimes. After assigning quests to apprehend all active
criminals the town guard leader will assign quests to collect
known contraband and deliver it for safekeeping. Finally, if
no crimes or illegal items are detected, it will assign a quest
for town guard agents to report any illegal actions or items.



Figure 2: Web-based client view of the fictional town of Bentham (left). Client information panel detailing some recent infor-
mation units (right).

Four “informant” agents are created to supply the guard fac-
tion leader with information and receive quests.

Thieves guild faction The thieves guild leader is primar-
ily concerned with the collection of illegal goods for itself.
The first priority of thieves guild leader is to assign quests
to “take revenge” against members of the town guard who
have recently arrested members of the thieves guild. The “re-
venge” quest currently just means identifying and attacking
the responsible guard. Once all possible “revenge” quests
have been assigned the thieves guild leader focuses on as-
signing quests to loot the most valuable items that it knows
about. Occasionally, it may decide to assign a quest to re-
ward an agent that have been helpful to the faction. Finally, if
it cannot create any other valid quest from its current knowl-
edge it assigns a quest to search for new treasures to ac-
quire. Four NPC faction members are also available to re-
ceive quests the same way player faction members do.

When possible, both faction leaders prioritize assigning
quests that are based on information directly relevant to the
agent they are talking to. For example, revenge quests for
the thieves factions are always assigned to the agent that has
been arrested by the targeted member of the town guard. The
same logic is used when assigning item retrieval quests; the
questing agent is informed it is being asked to retrieve the
item because it is the one that told about the whereabouts of
that item. This rule is not absolute though, factions leaders
will assign these followup quests to other faction members
if it has no other available quests and the preferred agent
is busy with another quest or otherwise unavailable. Ideally
this system is intended to give players the impression that
quests are based on their personal experiences.

Quest Generation System
Quests are represented in special information units that sig-
nify a goal to complete. They are generated based on the
current information knowledge of the quest giver, the quest

giver’s opinion of other agents in the world, and their unique
pre-defined goals. The quest giver’s information knowledge
is based entirely on events that occur in the game. Since
quests are designed around the agent-generated information,
quests can be dynamically generated as long as new infor-
mation is being created by players. Quest assignment logic
for quest givers is shown in Algorithm 1 and Algorithm 2.
In total there are 7 different types of quests that can be gen-
erated by the faction leaders based on their current logic.
This may seem like a small number but each quest type can
require a wide variety of different player actions to com-
plete and lead to different consequences. For example, the
quest to retrieve an item can result in a player searching for
it, stealing it, buying it, picking it up, or simply handing it
over. Quests can lead to different follow-up consequences
depending on their targets and how a player chooses to com-
plete them. The information system of Panoptyk allows for
easy creation of new quests types once gameplay actions are
added to support them.

Information representation
In general, information representation in Panoptyk is based
on first-order logic predicates. This representation is de-
signed to make it as easy as possible for NPC agents to rea-
son about the data they receive. All events that occur in the
world generate an information object. These objects link the
action performed with the relevant variables (agent(s), lo-
cation, time, item(s), etc.). Every possible action (shown in
table 1) is codified and new actions specific to other games
can be supported easily.

The server keeps a master copy of every piece of gener-
ated information, all information distributed to clients are
a reference to the master server copy. Panoptyk supports
the the usage of partial information, information where one
or more fields are masked to its owner. Masked informa-
tion still references the original server master copy, but the
masked fields are not sent to the client. The information sys-



Algorithm 1: Thieves Guild quest assignment logic

Require: target agent to give quest
Ensure: valid quest to give to target agent

if an opposing agent has done an action to harm target
agent then

return a revenge quest targeting the opposing agent that
refers to the harmful action done to target agent

else if some other agent’s action(s) have pleased the fac-
tion leader then

return a gift delivery quest targeting the other agent that
refers to how they pleased the faction leader

else if there is a valuable item that we don’t own then
assign item retrieval quest that refers to last known in-
formation about that item

else
assign generic quest to discover new items in the world

end if

Algorithm 2: Bentham Guard quest assignment logic

Require: target agent to give quest
Ensure: valid quest to give to target agent

if there is a crime that has gone unpunished then
return an arrest quest targeting the criminal and refer-
ring to the crime committed

else if there is an illegal item that is not currently im-
pounded by the Town Guard then

return an item retrieval quest that refers to last known
information about that item

else
return a quest to patrol the town and report any illegal
actions

end if

tem gives AI bot clients sufficient details to function without
the server’s intervention, thus maintaining our decentralized
system that allows external agents to shape the game world.

User study
Three user studies were carried out to validate the quality
of generated quests. The questions and format of the study
changed slightly between each iteration to ameliorate issues
as they appeared. In all studies, each subject was placed on
either the Bentham City Guard or Thieves Guild factions.
Subjects were expected to play through a few quests and
then answer a survey on their experience. All Versions of the
survey consisted of five different sections to evaluate multi-
ple parts of Panoptyk and the scenario. Free-response ques-
tions are grouped into categories of expected answers. Users
spent 30-60 minutes in each study.

First study The first study was offered to a college class of
Interactive Entertainment Engineering students. The testing
environment was chaotic due to multiple groups of students
trying to get their games tested. Subjects were given basic
instructions to follow the quests issued by their assigned fac-
tion and attempt to complete them to the best of their ability.
Unfortunately there were several technical and design issues

Table 1: List of actions and predicates: (T)ime, (A)gent,
(I)tem, (L)ocation, (Q)uantity, I(N)formation

Action Predicate Variables
Move (T,A,L,L)
Pickup (T,A,I,L,Q)
Drop (T,A,I,L,Q)
Steal (T,A,A,I,L,Q)
Pay (T,A,A,L,Q)

Arrest (T,A,A,L,N)
Assault (T,A,A,L,N)

Converse (T,A,A,L)
Gave (T,A,A,I,L,Q)
Ask (T,A,A,L,N)
Tell (T,A,A,L,N)

Assign Quest (T,A,A,L,N)
Fail Quest (T,A,A,L,N)

Complete Quest (T,A,A,L,N)
Show Possession (T,A,I,L,Q)

that hampered the testing session. This was our first attempt
to utilize more than three human testers in a single scenario,
and as a result the number of AI agents and scenario size
were poorly balanced for the increased player activity. The
user interface of Panoptyk at this point was very rudimentary
and lacked an in-game tutorial. These issues meant almost
all users struggled to play the scenario.

Second study The second study was completed over voice
chat with five members of a college game development
club. The scenario and clients interface were significantly
refined for this version. These changes included more de-
tailed quest reasoning, many bug fixes, and a new “Help”
window designed to teach the UI and give tips to confused
players. Despite many hours of bug fixing and informal test-
ing with other people, this session still suffered from some
issues. There were two servers crashes caused by one or
more testers not correctly following given instructions. For-
tunately, once the problem was found the rest of the test was
able to proceed.

Third study The final session was designed to address the
majority of the issues from the previous sessions. Six vol-
unteers conveyed their interest in participating. Testers were
assigned to two separate online sessions in groups of three
in order to minimize the chaos that was present in other
tests. It was also decided that the help interface was enough
to quickly educate players on how to operate the UI, so a
guided tutorial over screen-share was made part of the test-
ing process. Instructions were emailed to subjects multiple
days before their assigned session. Frustratingly, only 1 out
of 6 volunteers actually showed up to their assigned ses-
sion. While the participation rate was disappointingly low,
the lone tester did not run into any UI or technical glitches
during his testing session.

Evaluation
We ran multiple internal tests to make sure that the quest-
ing system was working as intended and that the AI faction



members were acting in a manner befitting their current sit-
uation and faction personality. Majority of our early testing
was focused on finding ways to have new information flow
to faction leaders. This was essential because unlike most
games, our quests have to be created entirely from the fac-
tion leader’s internal knowledge model.

Validation on quest generation with limited
information
To show that quest generation is possible with limited infor-
mation, quest givers must always be able to assign a quest.
To prove this, we start a fresh server instance in which no
agent has any information given by default. The quest giver
is able to, without knowledge of anything other than the
room it is in, request a conversation with any valid agent
in its room and assign a generic quest to gather more infor-
mation. This generic quest is possible by creating a type of
information predicate without specifying its action. For ex-
ample, a quest command of TILQ could be completed with
any information that has a time, item, location, and quantity.
Both AI agents and human clients are able to interpret this
as a quest to find any information that has the given prop-
erties. Therefore quests are able to be generated with only
basic knowledge of the structure of information.

Validating that relevant quests are generated
We define relevant as “based on events happening in the
game and related to the overall goals of the quest giver.”
In order for a quest to be based on events happening in
the game, the quest must have been created from an action
that occurred during gameplay. From the generic informa-
tion gathering quest, quest givers are able to gain informa-
tion about events occurring in the world. Quest givers use the
logic defined in either Algorithm 2 or Algorithm 1 to create a
valid quest that aligns with their goals. The generic informa-
tion gathering quests themselves do not meet our definition
of “relevant” but allow for quests that do to be generated.
Internal testing found that the full range quests defined in
said algorithms were able to be assigned and completed. We
can conclude that, given our definition of “relevant,” the sys-
tem is able to produce relevant quests. This was confirmed
in the internal validation test, data represented in Figure 3
shows that the majority of the assigned quests referenced an
in-game event.

Validation that quests have world consequences
For the purpose of internal validation, we consider quest re-
lated “consequences” as in-game quests assigned because of
any actions done as part of a previous quest, thus building
a causal narrative. We can show that quests cause conse-
quences that can affect both the questing agent and other
agents in the game. It is straightforward to see how agents
experience personal consequences from completing quests,
the generic information gathering quest often has the con-
sequence of a followup quest referencing the information
turned in as part of the information gathering quest. In spe-
cific cases, such as when an agent does an illegal action to

Figure 3: Internal test on quest relevance with a scenario us-
ing 10 AI agents and 2 humans

Figure 4: Internal test on follow-up consequences to quests
generated with a scenario using 10 AI agents and 2 humans

complete a quest, another agent can experience the conse-
quence of having to hunt down and arrest the first quest-
ing agent. This in turn can cause additional consequences
for the first quest agent, where they will be directed to take
revenge on the agent that arrested them (another illegal ac-
tion). There is also the positive consequence of a gift quest
that can be assigned to reward an agent that has done things
to please a quest giver. Internal testing shows that all of
the described quest consequences regularly occur, proving
that quests in the system have what we have defined as
“consequences”. To show that quests cause follow-up con-
sequences, we tracked consequences on the 30 quests gener-
ated in the internal test. Figure 4 shows the resulting follow-
up quests from the internal test; a follow-up quest was any
quest that referenced an event turned in to complete a previ-
ous quest.

Results
Results of first study
Issues with the UI meant that most users were not able to
provide much feedback on quests. Only 2 of the 7 testers
claimed that playing was an enjoyable experience. 6 out of
7 testers claimed that the UI was a weakness of the game.
In a more positive note, 5 out of 7 testers claimed that the



information system was a strength of the game, which is im-
portant as the information system is core to the Panoptyk
engine. In terms of quests, only 3 of the 7 testers were able
to complete any quests; only one of them was able to com-
plete more than one quest. Unsurprisingly, 6 out of 7 testers
to describe quests as “a little hard” or “way too hard” and re-
sulted in mostly neutral or negative responses for most ques-
tions related to quests. Fortunately, the player who was able
to complete the most quests had extremely positive feedback
for the quests. Feedback on the faction section showed that
only 1 of the 7 testers thought that assigned quests did not
make sense for their faction identity. 5 of the 7 testers felt
that their actions had an impact on other players in the game,
multiple players noted that other players could pick up items
required for their quest. Three players felt that there were not
enough actions in the game, while another three felt that the
actions were too complicated or hard to use.

Results of second and third studies
The results of the second and third studies are combined
since there were few participants and only minor feature
changes between the two sessions. No aspect of the game
was universally considered a strength or weakness. 2 of the
6 players were able to deduce that the quests were based on
events happening on the game. Every participant was able
to complete quests, with 4 out of 6 of them completing 5 or
more quests. One player turned in 55 quests due to an ex-
ploit that allowed him to turn in the same quest repeatedly.
Of the six participants, three of them found quests “a lit-
tle hard,” one found quests “way too hard” and one found
them “a little easy.” Every participant agreed that quests
were based on events happening in the game. Unfortunately,
due to the limited possible action space for quests, all but
one user found quests repetitive. Participants were divided
on whether quests had meaningful objectives or not. Two of
them thought they were not meaningful, three were neutral,
and one thought they were meaningful. Participants were
polarized on whether they received any positive or nega-
tive consequences from quests, 2 agreed or strongly agreed
they did and 2 strongly disagreed they did. In the free re-
sponse section asking for participants to describe interesting
encounters they had as a part or result of a quest, one partici-
pant mentioned he got stuck getting assigned the same quest
for the whole game, another participant noted they did a lot
of “thanking” quests, and the remaining participants talked
about an arrest event. In the feedback section, there was four
complaints related to bugs or UI issues. The remaining par-
ticipant wanted more detail in the empty areas of the city.

Only one participant was able to complete the extra ques-
tions designed for the third study. The participant agreed
having quests based on player input had a positive impact
on his experience. When asked about the advantages of such
quests he wrote “It helps make the story unique ... It can also
help the player get more involved in the story if they are hav-
ing a direct impact on the direction that it is going, instead of
a quest-on-rails storyline.” which was the exact intention be-
hind the system. When asked about the disadvantages of the
system he responded “I went and looked at a lot of different
items before coming back to the faction leader. Since I had

Figure 5: Second study quests completed

Figure 6: Second study quest questions

done that, I had a lot of options to choose from for turning
in the first quest.

The feedback towards factions was similar to the first
study. No participants thought that the quests assigned were
not appropriate for their faction. For additional feedback,
one participant complained that there was not enough back-
story given. Another participant never ended up interact-
ing with someone from a different faction, this player was
also the player assigned an abnormal number of “thanking”
quests. The feedback on impact towards other players cor-
related heavily with the question that asked about quest im-
pact. The only participants who disagreed that their actions
impacted other characters in the game were the players who
were not assigned quests targeting other players. When ask-
ing for additional feedback on gameplay actions, two partic-
ipants said there were enough actions to make gameplay en-
gaging. Three participants claimed that they had issues with
either the information system or UI.

Analysis
Overall, the results from user testing show positive trends
with room for improvement. The majority of users who did
not experience crippling bugs were able to perceive that the
generated quests were relevant to the events they were ex-
periencing, and that their actions could have consequences
that affected them later. The action/consequence implica-
tions of quests shows that our system contains the founda-
tions needed to generate immersive quests. All players who
experienced arrest-related quests talked about arrest-related
encounters when asked about interesting encounters related



to quests. This shows that players associated events around
the central plot point of being arrested.

The mixed feedback regarding the meaningfulness of
quest objectives was likely due to a number of factors. A
few players ran into critical bugs that prevented them from
completing quests. Players who were able to experience
quests were not guaranteed to experience all possible types
of quests due to the dynamic nature of their generation. In
the second study, a few of the players were able to gather all
the items around the world and deprive the slower players of
any chance to complete a quest. This issue was corrected by
restrictions to carry capacity in the third study, but was not
able to be thoroughly tested due to the lack of participants.
Another factor that may have hampered the meaningfulness
of quests objectives was the lack of backstory and context
surrounding the scenario.

Complaints about the repetitiveness of quests are unavoid-
able given that limited gameplay is possible in this early
build of the game. The main gameplay loop of finding items
did not really have any exciting moments associated with it.
The fact that no player commented on the different rewards
they received from completing quests probably means they
were uninteresting enough to go unnoticed. The way quests
objectives were displayed could have been another reason
for why quests were perceived as repetitive; quest objectives
always displayed the end goal rather than steps that a player
needed to take to complete it. For example, the item quests
always required a player to given an item to their faction
leader, but did not display any intermediary objectives lead-
ing up to the final objective. Assigning intermediary objec-
tives may have helped players notice that the actions they
were taking to complete quests were unique and dependent
on the overall state of the world.

Conclusion and Future Work
We have outlined a decentralized dynamic quest generation
system based on the observations and inputs of agents in
MMORPGs. This system was able to dynamically generate
personalized quests based on the experiences of the agents
interacting with it. We show, through a user study, that hu-
mans recognized that our dynamic quests were based off of
in-game events rather than procedurally generated facts. We
also show that players noticed positive or negative conse-
quences from actions they did as part of a quest. The con-
sequences of quest actions show the building blocks of gen-
erated drama and story. The drama of “arrest” quests led to
many players describing their encounters in the context of
that central plot point.

For future work we intend to overhaul the information
management interface. By design there are thousands of in-
formation units available to the human user, and the vast ma-
jority are useless, yet must be accessible from the interface.
Much more player testing is needed as we only had small
studies so far. The natural language descriptions of game in-
formation units also must improve in order to organically
and predictably describe the information to the user. In ad-
dition, the relatively basic gameplay offered by the current
engine made it difficult to offer varied quests that humans
player consider interesting. Gameplay mechanics based on

traditional RPGs mechanics, such as unique abilities that
can be leveled up, basic combat between adversaries, and
stealth actions would likely make the game more interest-
ing to the average gamer. We hope additional gameplay in
Panoptyk will open up more opportunities to create dramatic
plot points.

References
Bartle, R. A. 2004. Designing virtual worlds. New Riders.
Bartle, R. A. 2016. The Decline of MMOs, 303–316. Cham:
Springer International Publishing. ISBN 978-3-319-40760-
9.
Dehn, N. 1981. Story Generation After TALE-SPIN. In
IJCAI, volume 81, 16–18.
Doran, J.; and Parberry, I. 2011. A prototype quest gen-
erator based on a structural analysis of quests from four
MMORPGs. In Proceedings of the 2nd international work-
shop on procedural content generation in games, 1–8.
Doran, J.; and Parberry, I. 2015. A server-side framework
for the execution of procedurally generated quests in an
MMORPG. In GAMEON’15-Proceedings of the 16th An-
nual European Conference on Simulation and AI in Com-
puter Games, 103–110.
Dwarf Fortress Wiki. 2014. DF2014:Quest.
Hernandez, P. 2016. The Internet Loves Making Fun Of
Fallout 4’s Preston Garvey. Kotaku Australia.
Horswill, I. D. 2015. MKULTRA. In Eleventh Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence.
Horswill, I. D. 2018. Postmortem: MKULTRA, An Experi-
mental AI-Based Game. In Fourteenth Artificial Intelligence
and Interactive Digital Entertainment Conference.
Lebowitz, M. 1985. Story-telling as planning and learning.
Poetics, 14(6): 483–502.
Meehan, J. R. 1977. TALE-SPIN, An Interactive Program
that Writes Stories. In Ijcai, volume 77, 91–98.
Miller, M.; Mendonca, S.; Philliber, N.; and Khosmood, F.
2019. Panoptyk: information driven MMO engine. In Pro-
ceedings of the 14th International Conference on the Foun-
dations of Digital Games, 1–4.
Pita, J.; Magerko, B.; and Brodie, S. 2007. True story: dy-
namically generated, contextually linked quests in persistent
systems. In Proceedings of the 2007 conference on Future
Play, 145–151.
Propp, V. 2010. Morphology of the Folktale, volume 9. Uni-
versity of Texas Press.
Ryan, J. 2017. Grimes’ fairy tales: a 1960s story genera-
tor. In International Conference on Interactive Digital Sto-
rytelling, 89–103. Springer.
Ryan, J. 2018. Curating simulated storyworlds. Ph.D. thesis,
UC Santa Cruz.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.
Turner, S. R. 1993. Minstrel: a computer model of creativity
and storytelling.


